Speech Emotion Perception by Human and Machine
نویسندگان
چکیده
The human speech contains and reflects information about the emotional state of the speaker. The importance of research of emotions is increasing in telematics, information technologies and even in health services. The research of the mean acoustical parameters of the emotions is a very complicated task. The emotions are mainly characterized by suprasegmental parameters, but other segmental factors can contribute to the perception of the emotions as well. These parameters are varying within one language, according to speakers etc. In the first part of our research work, human emotion perception was examined. Steps of creating an emotional speech database are presented. The database contains recordings of 3 Hungarian sentences with 8 basic emotions pronounced by nonprofessional speakers. Comparison of perception test results obtained with database recorded by nonprofessional speakers showed similar recognition results as an earlier perception test obtained with professional actors/actresses. It was also made clear, that a neutral sentence before listening to the expression of the emotion pronounced by the same speakers cannot help the perception of the emotion in a great extent. In the second part of our research work, an automatic emotion recognition system was developed. Statistical methods (HMM) were used to train different emotional models. The optimization of the recognition was done by changing the acoustic preprocessing parameters and the number of states of
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملRecognition of Human Emotion in Speech Using Modulation Spectral Features and Support Vector Machines
Automatic recognition of human emotion in speech aims at recognizing the underlying emotional state of a speaker from the speech signal. The area has received rapidly increasing research interest over the past few years. However, designing powerful spectral features for high-performance speech emotion recognition (SER) remains an open challenge. Most spectral features employed in current SER te...
متن کاملEnsemble methods for spoken emotion recognition in call-centres
Machine-based emotional intelligence is a requirement for more natural interaction between humans and computer interfaces and a basic level of accurate emotion perception is needed for computer systems to respond adequately to human emotion. Humans convey emotional information both intentionally and unintentionally via speech patterns. These vocal patterns are perceived and understood by listen...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007